VARIATIONAL PROBLEM OF HEATING THIN BODIES

E. M. Gol'dfarb and V. S. Ibraev UDC 536.244

The problem of heating thin bodies optimally, in terms of a compogite minimum fuel cost and
metal loss by oxidation, is solved analytically. The solution is based on L. S. Pontryagin's
maximum principle.

We consider the variational problem of heating thin bodies at a composite minimum fuel cost and
metal loss by oxidation, The heat is transmitted from the flue gases to the metal according to Newton's
Law and the heating dynamics is characterized by the following equation:
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where u = Ge/ Fa.

. The total quantity of heat B [1] and the thickness squared of oxide film w? [2] after time Tf are defined
in terms of functionals
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where My = a FT..

It is required to design a control Tq(r) which would, during the transition of a metal from the initial
state Tj to the final state Tf, ensure a minimum of the optimality criterion R:

R = min [KB (t¢) + o* ()], @)
G

where K = kp/kg.

In order to solve the problem, we apply the maximum principle. Using the mean value of specific
heat ¢, of the heat transfer coefficient o, and of the idle-run power My, we can write the Hamiltonian for
the problem:
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The conjugate variables Py, Py, and P; are determined from the following relations:

_ﬁi&_:_ﬂ; dpr, o oH , dpP, :__@_. )
dr 0B dt d {0?) dt oT
Solving Eq. (6) we have
P, = —K; (7)
Py=—1; (8)-
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From the extremum condition 8H/ BTG = 0 we find

Te—T
P,=ukM_ ¢ - | (10
R T T )
We test the function H for a maximum:
2 —_
PH _ _oxm, Te=T (11)
TG (Te— TP
Here K> 0, My > 0, and T¢ > Tg > T and, therefore, function H has a maximum.
We differentiate expression (10) with respect to time
; dTg dar
2(Te—T) 28 — (T, —Tp) “—
ap, —uKM, ¢ dv °3 dv - (12)
dr ) (Tc - TG)

Inserting the value of P; from (10) and of dPs/dr from (12) into Eq.. (9), then solving (9) simultaneous-
ly with (1), we have
" p
3 P
dTs_Te—Tg, _n_ TeT0 e -]
ar T.—T 2KM, T.—T)(T—T)T?

(i—l). (13)

We now change the variables:

y=Te—Tg z2=T.—T. (14)
Taking into account (14), we can represent Eq. (13) in the following form:
9y
dz
o[- —aT—apen (- ) agen [~ )]
== TC"'Z Tc“'z,
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with
% B
1= ;A= .
3KM, 2KM,
We introduce the function
y=2Te—2P (16)

x+z(To—2P

Differentiating Eq. (16) with respect to z and inéeffing the values of y and dy/dz into Eq. (15), we
obtain the Bernoulli equation

dx T.—4z (s B 1
— = T, —2P A (T.—2)—A — — 1
dz [Z (Tc——z)] x+ {2 (To— 2P 1A ( c— 2 o] EXP( Tc z)} P (17)
whose solution by well known methods is
A p
x=2z2{T,—2)p l/ 1 — ) C. 18)
(Te ) / T,z exp ( T,—2 -+ (

Substituting this for x in Eq. (16) and changing to variables T, T will yield an expression which
establishes the optimum relation between the temperature of flue gases and the temperature of metal dur-
ing the heating process:

T.—T
To=T, — 7 < ; . (19)
1 Lrep—B)tc
Vo7 Xp( )"

/

1196



We will then use relation (19) for determining T(r) from Eq. (1):

n Gt @)

{20)

where

1nf(T)=S(T —T)l/—exp( )+c (21)

The integration constants C and C; are evaluated from the initial conditions, and the heating curve
for the metal is plotted according to Eq. (20). The optimum control Tg(7) is determined from expression
(19) with T(r) already figuring in it.

The useful thermal power of the furnace My is determined according to the formula

M= M, 1/—/2—3- exp (__ﬁr_) +C (22)

The heating time can be calculated from the condition that H = 0, unless it is limited by constraints
of the problem. Expression (5) becomes in this case, with (7), (8),and (10) taken into account,

To—T _ W __9_>
— KM, =T, KM, — % exp( T
+xm, Te=DTe=T) _ 4 (23)

(T—To)
Having solved Eq. (23) for T, we obtain

To— . (24)

with D = ®/KM,.

After inserting (24) into Eq. (1) and integrating, we obtain a relation for the optimum heating period

« Te—T; ]

= T, Tpi,
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with
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From these solutions follows the special case of optimally heating a metal at a minimum fuel con-
sumption {1]. Thus, for example, if we let D = 0 in expression (26) {k, = 0, i.e., metal oxidation is ne-~
gligible), we obtain a formula for the optimum heating period in terms of minimum fuel consumption:

Tf’*‘p,( )In —Ti

T.—T¢ 27)
If the control Tq(r) is restricted to T < T, then the heating mode (when this restriction goes into
effect) will be made up of two periods: 1) optimum heating in terms of a composite minimum fuel cost and
metal loss by oxidation, and 2) heating at a constant flue-gas temperature. The metal temperature during
the second period can be found from the expression

T=Tg—(Tg— u)eXp( THH—T)- (28)

(26)

If one compares the optimum heating modes of thin bodies first in terms of minimum fuel consump-
tion and then in terms of minimum loss of metal by oxidation, then in the first case the optimum heating
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period is of some length 71 and in the second case the temperature rises at the maximum rate. In our
problem the optimum heating period is shorter than in the first case and longer than in the second case, it
also depends on the ratio of cost factors kT and k.

NOTATION

Tg is the temperature of flue gases;
T is the temperature of heated body;
T is the time;

Tf is the completion time of heating process;
G is the mass of heated body;

c is the specific heat of heated material;

F is the surface area of heated body;

o is the heat transfer coefficient;

B is the thermal flux;

w is the thickness squared of oxide film;

Te is the calculated temperature of fuel combustion {3];

Mx is the idle-run furnace power;

Ty, Tg, Tjr  are the initial, final, and transition (between the two heating periods) temperature of the
metal;

P;, Py, P;  are the conjugate variables;

Ti is the transition time (beginning of second heating period);

R is the optimality criterion;

H , is the Hamilton function;

T is the control limit;

kr, kg are the cost factors of fuel consumption and scale formation respectively;

%, B are the constant coefficients characterizing the oxidation kinetics.
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