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The problem of heating thin bodies optimally, in t e rms  of a composi te  minimum fuel cost and 
metal  loss by oxidation, is solved analytically.  The solution is based on L. S. Pontryagin ' s  
maximum principle .  

We consider  the variat ional  problem of heating thin bodies at a composi te  minimum fuel cost and 
metal  loss by oxidation. The heat is t ransmi t ted  f rom the flue gases  to the metal  according to Newton's 
Law and the heating dynamics is charac te r i zed  by the following equation: 

dT T G -  T , (1) 
dr ~t 

where u = G c / F a .  

The total quantity of heat B [1] and the thickness squared of oxide film co 2 [2] after  t ime f f  are  defined 
in t e r m s  of functionals 

The conjugate var iables  Pi, 

dP~ 
dr 

Solving Eq. (6) we have 

~f B--:J(Mo T G - - T  \  -NV_ Mx ) 
0 

~f 

(~ S • d% 
T exp (~/T) 

0 

(2) 

(3) 

where M 0 = a FT c. 

It is required  to design a control TG(T) which would, during the t ransi t ion of a metal  f rom the initial 
state Ti to the final state Tf, ensure  a minimum of the optimality c r i te r ion  R: 

R -- mia [KB (xf) + co S (xf)], (4) 
TG 

where K = kT /k  0. 

In o rder  to solve the problem,  we apply the maximum principle.  Using the mean value of specific 
heat e, of the heat t r ans fe r  coefficient a ,  and of the id le- run power Mx, we can write the Hamiltonian for 
the problem:  

H = P x M o  T G - - T  + PxMx + P 2 •  T~_ ) + p a  T G - - T  (5) 
T c - -  T 6 

P2, and P3 are  determined f rom the following relat ions:  

OH dP 2 OH dP~ 8H 
= - -  ; "= = " = - - - .  (6) 

OB d* 0 (o~ ~) ' dz OT 

P1 = - K ;  (7) 

P~ = - -  1; (8) 
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dP3 _ PlMo p.~• ( 

d'~ T c - -  T G T 

From the e x t r e m u m  condition 8H/0T  G = 0 we find 

Ps= gKMo T c -  T 
(T~-- TG)~ 

We tes t  the function H for  a max imum:  

02H =__2KMo T c - - T  
OT~ (T c - -  T O` " 

- - 1 ) T - 2 e x p ( - - - ~ ) +  p3-. (9) 

(lO) 

(11) 

Here  K > 0, M 0 > 0, and Tc > TG > T and, the re fo re ,  function H has  a max imum.  

We di f ferent ia te  express ion  (10) with r e spec t  to t i m e  

2 (T c -  T) dTG dT 
dP3 =~KM ~ ~ -- (Tc -- TG) dr (12) 

dr (T c - -  TG) a 

Inser t ing  the value of P3 f r o m  (10) and of d P J d r  f rom (12) into Eq. (9), then solving (9) s imul t aneous -  
ly with (1), we have 

drG= T c - -  TG ~ 2KM-----~ " (T c -- T) ( r  G -  r )  T ~ T 

(14) 

(i5) 

dT T c -  T 

We now change the va r i ab l e s :  

y = T e - -  TG; z = T c - - T .  

Taking into account (14), we can r e p r e s e n t  Eq. (13) in the following form:  

@ 
dz 

8 

= - 7 . - - , ,  

z (z - -  g) (T c -  z) 3 

AI = - ~ "  As=- ~u___~__. 
3KMo ' 2KM o 

We introduce the function 

z2 (Tc  - -  z)a (16)  
x + z (T c--  z) 8 

Different iat ing Eq. (16) with r e s pec t  to z and inse r t ing  the values  of y and dy/dz  into Eq. (15), we 

with 

obtain the Bernoull i  equation 

dx. = I T  c -  4z ] x + z ~ (T c -  z) 3 [A 1 ( r  c -  z) - -  As] exp - -  Tc--  ~ , 
dz [z (Tc--Z)J 

whose solution by well known methods is  

x = z (T c - -  z) a Tc----~- Tc __~ 

(17) 

(zs) 

Substituting this for  x in Eq. (16) and changing to va r i ab l e s  TG, T will yield an express ion  which 
es tab l i shes  the opt imum re la t ion  between the t e m p e r a t u r e  of flue gases  and the t e m p e r a t u r e  of me ta l  dur -  
ing the heat ing p roce s s :  

TO = r c , _  T c - -  T (19) 

1 + k / ' - ~  exp ( -  ~ - )  -b c 

1196 



We will then use relation (19) for determining T(~) from Eq. (i): 

= p In Cl"f (T) 
T c - -  T ' 

where 

(20) 

lnf(T) S dT = (21) 
(Tc-- T) V - ~  flxP (--~-) + C 

The integrat ion constants C and C 1 a re  evaluated f rom the initial conditions, and the heating curve 
for the metal  is plotted according to Eq. (20). The optimum control  TG(r) is de termined  f rom express ion  
(19) with T(r) a l ready figuring in it .  

The useful the rmal  power of the furnace  Mf is de termined  according to the formula  

The heating t ime  can be calculated f rom the condition that H = 0, unless  it is l imited by constraints  
of the problem.  Express ion  (5) becomes in this case,  with (7), (8), and (10) taken into account, 

T c -  T O 

-I- KMo (To-- T) (T c -  T) = 0. (23) 
(T c - -  TG? 

Having solved Eq. (23) for TG, we obtain 

with D = ~4/KM 0. 

with 

TG= 
i :+"~ /V Mx -[- D M0 -~-  exp ( - - - ~ )  (24) 

After inserting (24) into Eq. (1) and integrating,  we obtain a re la t ion for the optimum heating period 

- -  T~ ~ (Tt '  Tf) , (25) 

i ~ d T  . 

z i 

From these solutions follows the special case of optimally heating a metal at a minimum fuel con- 
sumption [i]. Thus, for example, if we let D = 0 in expression (26) (k 0 = 0, i.e., metal oxidation is ne- 
gligible), we obtain a formula for the optimum heating period in terms of minimum fuel consumption: 

If the control TG(~- ) is restricted to T G < To, then the heating mode (when this restriction goes into 
effect) will be made up of two periods: I) optimum heating in terms of a composite minimum fuel cost and 
metal loss by oxidation, and 2) heating at a constant flue-gas temperature. The metal temperature during 
the second period can be found from the expression 

T= TG--(TG-- T i I ) e x p ( ~ ) "  (28) 

If one compares  the optimum heating modes of thin bodies f i r s t  in t e r m s  of minimum fuel consump- 
tion and then in terms of minimum loss of metal by oxidation, then in the first case the optimum heating 
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per iod is of some  length r f  and in the second case  the t e m p e r a t u r e  r i s e s  at the m a x i m u m  ra te .  In our 
p rob lem the opt imum heating per iod is s h o r t e r  than in the f i r s t  case  and longer  than in the second case ,  it 
a lso depends on the ra t io  of cost  f ac to r s  kT and k 0. 

TG 
T 
T 

Tf 
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Tc 
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PI, P2, P3 
Til 
R 
H 

To 
kT, k0 

N O T A T I O N  

is the t e m p e r a t u r e  of flue gases ;  
is  the t e m p e r a t u r e  of heated body; 
is the t ime;  
is  the complet ion t ime  of heating p rocess ;  
is  the m a s s  of heated body; 
xs the spec i f ic  heat  of heated ma te r i a l ;  
is  the su r f ace  a r e a  of heated body; 
is the heat  t r a n s f e r  coefficient;  
i s  the t h e r m a l  flux; 
is  the th ickness  squared  of oxide film; 
is  the calculated t e m p e r a t u r e  of fuel combust ion [3]; 
~s the id l e - run  furnace power;  
a r e  the init ial ,  final, and t rans i t ion  (between the two heat ing per iods)  t e m p e r a t u r e  of the 
metal ;  
a r e  the conjugate va r i ab les ;  
is the t rans i t ion  t ime  (beginning of second heating period);  
is the opt imal i ty  cr i te r ion;  
is the Hamil ton function; 
is the control  l imit ;  
a r e  the cost  fac tors  of fuel consumption and sca le  fo rmat ion  respec t ive ly ;  
a r e  the constant coefficients cha rac te r i z ing  the oxidation kinet ics .  

2. 
3. 
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